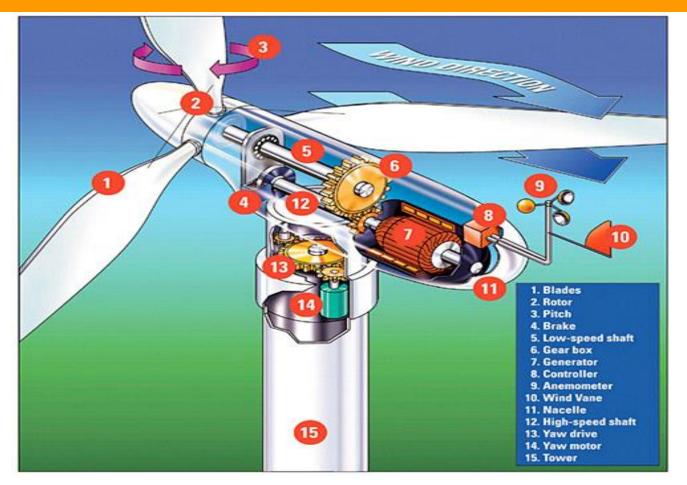
Procurement Planning with Supplier Uncertainty

Marc Goetschalckx and Aly Megahed

marc.goetschalckx@isye.gatech.edu

ISERC 2014 Montreal, Canada


Electrical wind turbine Farm in Ontario, CA

diameter 90 m (older) ~ 120 m (current) ~ 160 m (future) 100 m tower 160 m tall

The H. Milton Stewart School of Industrial and Systems Engineering

Wind Turbine Components

Components of a Wind Turbine (Liu and Chu 2012)

Wind Turbine Blades Transportation by Rail

(Source: www.vestas.com)

4/20

Wind Turbine Components using Truck Transportation

(Source: www.nrel.gov)

The H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology

Problem Characteristics

Problem is highly supply constrained

- \checkmark Specialized suppliers with long lead times
- Ordering from suppliers is done before uncertainty is revealed
- ✓ After it is revealed, products flow, demand fulfilled
- ✓ If supply < demand: backorders and lost sales</p>
- ✓ If supply > demand: inventory and capacity expansions
- In wind turbines supply chains:
 - ✓ Renting off-site storing for parts that arrived early
 - ✓ Arrangement for transportation

Supplier Uncertainty

- Suppliers' uncertainty
 - Demand uncertainty is most commonly studied
- Components of Uncertainty in supply/supplier are:
 ✓ Uncertainty in costs and capacities (e.g. Alonso-Ayuso
 - et al. 2003 & 2007, Santoso et al. 2005)
 - ✓ Random yield (e.g. Bollapragada and Morton 1999)
 - ✓ And/or random lead times (e.g. Dolgui et al. 2002)
- Uncertainty studied: random yield + stochastic lead times

Modeling General Supplier Uncertainty

- For each supplier $i \in S$, product $p \in P$ in scenario $\omega \in \Omega$, Supplier uncertainty index $\Delta_{iptt'}(\omega)$:
 - ✓% supplier delivers in period $t \in \{t', ..., |T|\}$ out of what he should have delivered in period $t' \in T$

$$\checkmark \sum_{t \in \{t', \dots, |T|\}} \Delta_{iptt'}(\omega) \leq 1$$
.

 ✓ Supplier pays a penalty ps_{iptt'} per unit delayed (backorder penalty may be a nonlinear function of the delay)

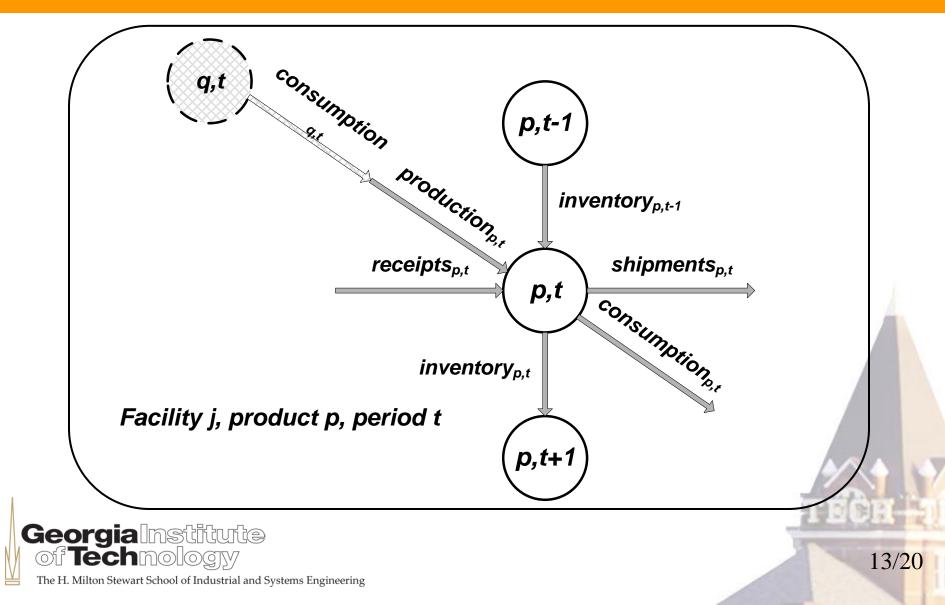
10/20

Model Development Highlights

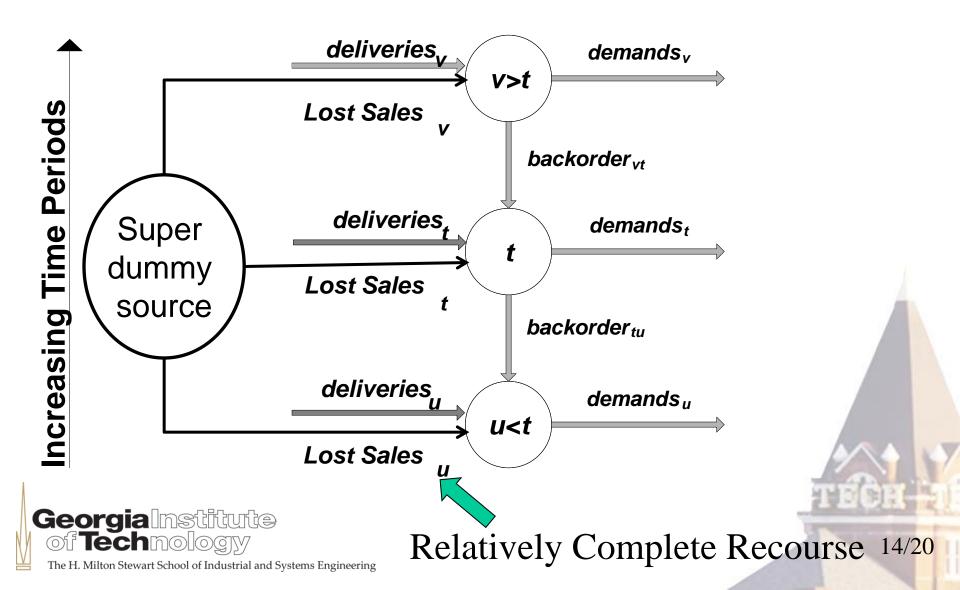
$$\begin{split} &\text{Min} \sum_{i \in S} \sum_{j \in TF} \sum_{p \in P} \sum_{t \in T} pc_{ipt} pq_{ijpt} + \mathbb{E}_{\omega}[Q(pq, \omega)] \\ &\text{s.t.} \quad \sum_{j \in TF} pq_{ijpt} \leq Max_{ipt} \quad \forall i \in S, \forall p \in P, \forall t \in T \\ & pq_{ijpt} \geq 0 \quad \forall i \in S, \forall j \in TF, \forall p \in P, \forall t \in T \end{split}$$

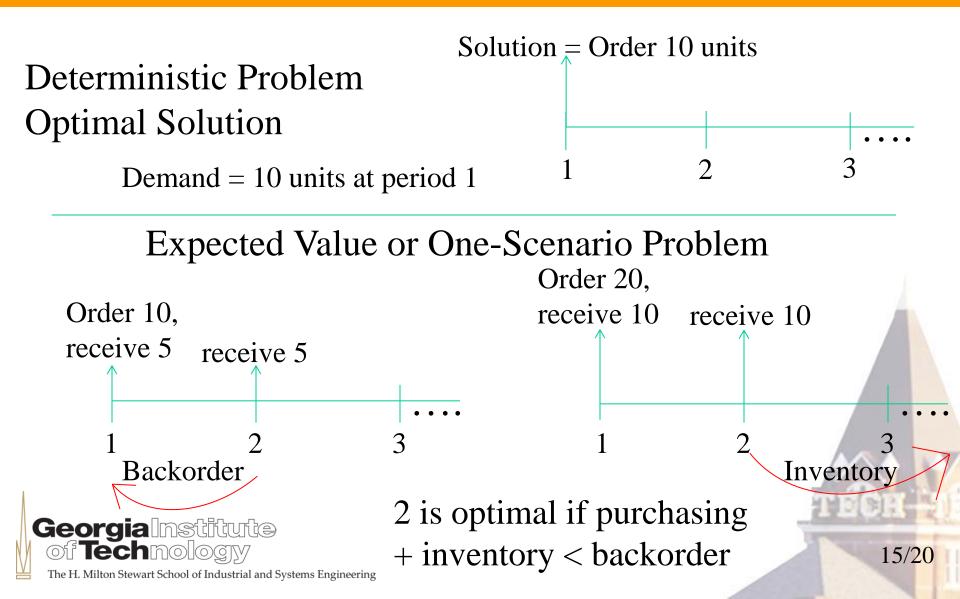
 $Q(pq, \omega)$ is the optimal value of the 2nd stage problem:

- Objective function: Transportation + (BOM Assembly) Transformation + Inventory + Backorder
 - + (Tactical) capacity expansion costs
 - ✓ Supplier penalty
 - ✓+ Lost sales penalty


Model Development Highlights (Continued)

Second Stage constraints:


- ✓ Flow Balance using BOM
- $\checkmark x_{ijpt}(\omega) = \\ \sum_{t' \in \{1, \dots, t\}} \Delta_{iptt'}(\omega) \cdot pq_{ijpt'} \ \forall i \in S, \forall j \in TF, \forall p \in P, \forall t \in T$
- Capacity constraints with added tactical capacity expansions at suppliers, transportation, inventory, production, throughput, and resources, e.g.
 - $iq_{jpt}(\omega) \leq icap_{jpt} + icapExp_{jpt}(\omega) \quad \forall j \in TF, \forall p \in P, \forall t \in T$


Model Development: Transformation Facilities Conservation of Flow

Customers Conservation of Flow with Backorders

Optimal Solution May Order More than the Deterministic Demand

Numerical Experiment Setup

• 24 Suppliers with three levels of reliability

- ✓2,5,8 maximum delay time
- Quantity delivered in each period binomially distributed with probability linear in function of scenarios
- ✓ 3 levels purchasing cost dependent on reliability (1:0.7:0.4 cost ratios)
- 2 levels backordering costs
- 52 periods + 5 periods with zero demand

Numerical Experiment Setup (Continued)

50 Scenarios

Numerical Experiment Execution

- Database: Microsoft Access Model: GPML
 MIP Solver: CPLEX 12.2
 Computer: T7200, 6 MB RAM
- Deterministic Equivalent Problem (DEP) with default parameters (no decomposition)
 - ✓ LP Model generation 25 minutes
 ✓ Model solution < 0.2 minutes

Results of Numerical Experiment: Sourcing from Unreliable Suppliers

Backorder Cost Level	Purchasing Cost Level	Cost Increase	% Procure	% Procure	% Procure	% Procure
		over 100% Reliable	ment Most Reliable	ment Medium Reliable		ment over Demand
Low	Low and Equal for All Suppliers	1.51	62.34	11.08	26.58	0
High	Low and Equal for All Suppliers	3.12	69.71	13.13	17.16	0.09
Low	High and Equal for All Suppliers	0.09	44.67	18.48	36.85	0
High	High and Equal for All Suppliers	0.27	50.99	20.03	28.98	0
Low	High with More Reliable Suppliers Being More Expensive	0.62	0	0	100	0
High	High with More Reliable Suppliers Being More Expensive	4.15	0	1.94	98.06	0.45
Low	Low with More Reliable Suppliers Being More Expensive	9.72	0	2.01	97.99	0
High	Low with More Reliable Suppliers Being More Expensive	20.79	2.1	1.83	96.06	3.71

Results of Numerical Experiment

Backorder Cost Level	Purchasing Cost Level	% Procure ment Most Reliable	% Procure ment Medium Reliable		% Procure ment over Demand	% Cost EVP below MVP
Low	Low and Equal for All Suppliers	51.38	9.99	38.63	0	1.44
High	Low and Equal for All Suppliers	52.87	10.54	36.59	0.26	2.57
Low	High and Equal for All Suppliers	41.83	16.85	41.32	0	0.09
High	High and Equal for All Suppliers	41.38	17.17	41.44	0	0.19
Low	High with More Reliable Suppliers Being More Expensive	0	0	100	0	0.6
High	High with More Reliable Suppliers Being More Expensive	0	0	100	0.04	3.92
Low	Low with More Reliable Suppliers Being More Expensive	0	0	100	0	9.5
High	Low with More Reliable Suppliers Being More Expensive	0	0.03	99.97	0.69	19.55

EVP: expected value problem (stochastic) MVP: mean value problem (deterministic)

The H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology

Results of Numerical Experiment

- Cheapest suppliers are selected regardless of reliability
- Expected Value Problem cost more than deterministic problem (100% reliable)
- Excess purchasing only for large backorder cost and small purchasing cost
- Cost increase EVP over deterministic (100% reliable) grows with backorder cost

Results of Numerical Experiment (Continued)

- % cost decrease of EVP versus MVP (VSS) increases with backorder costs
- Decisions of the model cannot be predicted by "intuition" or rules of thumb, a mathematical modes is required
 - Procurement source and quantity and timing (purchase + transport cost), inventory, backorder, and excess procurement are extremely interdependent

Conclusions

- A 2-stage stochastic programming model for comprehensive tactical supply chain planning under supplier uncertainty was developed
- Uncertainty/unreliability of suppliers in one of its most general forms is modeled
- A direct real-world application is in the wind turbines industry
- Optimal procurement quantities when considering supplier uncertainty might be larger than deterministic demand

Conclusions (Continued)

- Model chooses cheapest suppliers, regardless of their reliability
- Solution of Expected/mean value problem > deterministic problem
- % relative difference in costs increases when backorder costs get higher
- VSS/stochastic solution reached values of up to 20%

May I answer any questions?

